Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction.

نویسندگان

  • Stefan Krauss
  • Chen-Yu Zhang
  • Luca Scorrano
  • Louise T Dalgaard
  • Julie St-Pierre
  • Shane T Grey
  • Bradford B Lowell
چکیده

Failure to secrete adequate amounts of insulin in response to increasing concentrations of glucose is an important feature of type 2 diabetes. The mechanism for loss of glucose responsiveness is unknown. Uncoupling protein 2 (UCP2), by virtue of its mitochondrial proton leak activity and consequent negative effect on ATP production, impairs glucose-stimulated insulin secretion. Of interest, it has recently been shown that superoxide, when added to isolated mitochondria, activates UCP2-mediated proton leak. Since obesity and chronic hyperglycemia increase mitochondrial superoxide production, as well as UCP2 expression in pancreatic beta cells, a superoxide-UCP2 pathway could contribute importantly to obesity- and hyperglycemia-induced beta cell dysfunction. This study demonstrates that endogenously produced mitochondrial superoxide activates UCP2-mediated proton leak, thus lowering ATP levels and impairing glucose-stimulated insulin secretion. Furthermore, hyperglycemia- and obesity-induced loss of glucose responsiveness is prevented by reduction of mitochondrial superoxide production or gene knockout of UCP2. Importantly, reduction of superoxide has no beneficial effect in the absence of UCP2, and superoxide levels are increased further in the absence of UCP2, demonstrating that the adverse effects of superoxide on beta cell glucose sensing are caused by activation of UCP2. Therefore, superoxide-mediated activation of UCP2 could play an important role in the pathogenesis of beta cell dysfunction and type 2 diabetes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes.

Uncoupling of the endothelial nitric oxide synthase (eNOS) resulting in superoxide anion (O(2)(-)) formation instead of nitric oxide (NO) causes diabetic endothelial dysfunction. eNOS regulates mobilization and function of endothelial progenitor cells (EPCs), key regulators of vascular repair. We postulate a role of eNOS uncoupling for reduced number and function of EPC in diabetes. EPC levels ...

متن کامل

Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets.

Uncoupling protein 2 (UCP2) negatively regulates insulin secretion. UCP2 deficiency (by means of gene knockout) improves obesity- and high glucose-induced beta cell dysfunction and consequently improves type 2 diabetes in mice. In the present study, we have discovered that the small molecule, genipin, rapidly inhibits UCP2-mediated proton leak. In isolated mitochondria, genipin inhibits UCP2-me...

متن کامل

Long term exposure to L-arginine accelerates endothelial cell senescence through arginase-II and S6K1 signaling

L-arginine supplementation is proposed to improve health status or as adjunct therapy for diseases including cardiovascular diseases. However, controversial results and even detrimental effects of L-arginine supplementation are reported. We investigate potential mechanisms of L-arginine-induced detrimental effects on vascular endothelial cells. Human endothelial cells were exposed to a physiolo...

متن کامل

Uncoupling Protein-2 Modulation of Reactive Oxygen Species and Cell Viability in the Pancreatic Beta Cell

Uncoupling Protein-2 Modulation of Reactive Oxygen Species and Cell Viability in the Pancreatic Beta Cell Simon C. Lee M.Sc. Thesis 2008 Department of Physiology University of Toronto Uncoupling protein-2 (UCP2) may be linked to the attenuation of reactive oxygen species (ROS), but it is unclear whether this phenomenon pertains to the pancreatic beta cell. In this study, a UCP2-deficient mouse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 112 12  شماره 

صفحات  -

تاریخ انتشار 2003